Perspectives of Single-Wall Carbon Nanotube Production

in the Arc Discharge Process

A.V. Krestinin1, N.A. Kiselev2, A.V. Raevskii1, A.G. Ryabenko1,

D.N. Zakharov2 and G.I. Zvereva1

1Institute of Problems of Chemical Physics RAS, Chernogolovka, Moscow Region, 142432, Russia,

2Institute of Crystallography RAS, Leninskii Prospekt 59, Moscow, 117333, Russia


Single-wall carbon nanotubes (SWNTs) promise wide applications in many technical fields. As a result purified SWNT material is sold now on the West market at more than $1000 per 1 gram. Thus developing an effective technology for SWNTs production rises to a very important scientific problem. The perspectives of three existing methods providing raw material in the technology of SWNT production have been analyzed. They are i) pulsed laser evaporation of graphite/metal composites, ii) evaporation of graphite electrodes with metal content in the arc discharge process, and iii) catalytic decomposition of the mixture of CO and metal carbonyl catalyst precursor. The observed dynamics of SWNT market points to replacing the laser method of SWNTs production by the arc process. The conclusion has been made that the technology based on the arc process will be the major one for the fabrication of purified SWNTs at least for the next five years. A reliable estimation of a low price limit of SWNTs was derived from a comparison of two technologies based on the arc discharge process: the first one is the production of SWNTs and the second one is the production of a fullerene mixture С60 + С70. The main conclusion was made that the price of purified SWNTs should always be more by 2-3 times the price of fullerene mixture. The parameters of a lab-scale technology for the production of purified SWNTs are listed. A large-scale application of the developed technology is expected to reduce the price of purified SWNTs by approximately ten times. The methods now employed for the characterization of products containing SWNTs are briefly observed. It is concluded that electron microscopy, thermogravimetric analysis, absorption and Raman spectroscopy, measurement of the specific surface aria, optical microscopy each in separation is not enough for extensive characterization of a sample containing SWNTs, and all these methods should be used together.