Mechanical and Swelling Characteristics of

Kappa-carrageenin/Poly-N-isopropylacrylamide Blend Hydrogels

Zhang Yalong, Zhang Yanqun, Yi Min and Ha Hongfei

College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P.R China


Two- or multi-component hydrogels consisting of the three-dimensional network of polymer chains play more and more significant role in the field of biomaterials such as contact lens, burn dressing drug delivery systems etc or in some technical fields such as gel actuators, sensors, absorbents etc. In the work, a novel blend hydrogel composed of kappa-carrageenin (KC) and polyisopropylacrylamide (PNIPAAm) was prepared via gamma-radiation technology at room temperature. The main component of the hydrogels is a typical temperature sensitive polymer PNIPAAm. As the second component, KC is a kind of natural macromolecules. The properties of the gels, such as gel strength, and swelling behavior were investigated. The incorporation of relatively small content (up to 5 wt.%) of KC could obviously improve the mechanical properties and swelling capacity. 3% KC content in the blend hydrogel is preferable for better strength and swelling properties. On the other hand, as a kind of polysaccharide, KC would be degraded by g-rays; so suitable dose must be controlled carefully. Here the total dose used was controlled below 3 kGy. KC is soluble in water. If the hydrogels synthesized in the work were as usually extracted in water or other polar solvent such as methanol, the KC in hydrogels would be also washed out completely together with unreacted monomer and linear polymer, and the action of KC in the blend hydrogels would be disappeared. Otherwise, the results published before showed that the unreacted monomer and linear polymer in the hydrogels were very small, no more than 3-5%, which would not affect the properties of the hydrogels.